Functional plasticity of paralogous diterpene synthases involved in conifer defense.
نویسندگان
چکیده
The diversity of terpenoid compounds produced by plants plays an important role in mediating various plant-herbivore, plant-pollinator, and plant-pathogen interactions. This diversity has resulted from gene duplication and neofunctionalization of the enzymes that synthesize and subsequently modify terpenes. Two diterpene synthases in Norway spruce (Picea abies), isopimaradiene synthase and levopimaradiene/abietadiene synthase, provide the hydrocarbon precursors for most of the diterpene resin acids found in the defensive oleoresin of conifers. Although these paralogous enzymes are 91% identical at the amino acid level, one is a single-product enzyme, whereas the other is a multiproduct enzyme that forms completely different products. We used a rational approach of homology modeling, protein sequence comparison, domain swapping, and a series of reciprocal site-directed mutagenesis to identify the specific residues that direct the different product outcomes. A one-amino acid mutation switched the levopimaradiene/abietadiene synthase into producing isopimaradiene and sandaracopimaradiene and none of its normal products. Four mutations were sufficient to reciprocally reverse the product profiles for both of these paralogous enzymes while maintaining catalytic efficiencies similar to the wild-type enzymes. This study illustrates how neofunctionalization can result from relatively minor changes in protein sequence, increasing the diversity of secondary metabolites important for conifer defense.
منابع مشابه
Cytochrome P450 mono-oxygenases in conifer genomes: discovery of members of the terpenoid oxygenase superfamily in spruce and pine.
Diterpene resin acids, together with monoterpenes and sesquiterpenes, are the most prominent defence chemicals in conifers. These compounds belong to the large group of structurally diverse terpenoids formed by enzymes known as terpenoid synthases. CYPs (cytochrome P450-dependent mono-oxygenases) can further increase the structural diversity of these terpenoids. While most terpenoids are charac...
متن کاملLoblolly pine abietadienol/abietadienal oxidase PtAO (CYP720B1) is a multifunctional, multisubstrate cytochrome P450 monooxygenase.
Cytochrome P450 monooxygenases (P450s) are important enzymes for generating some of the enormous structural diversity of plant terpenoid secondary metabolites. In conifers, P450s are involved in the formation of a suite of diterpene resin acids (DRAs). Despite their important role in constitutive and induced oleoresin defense, a P450 gene of DRA formation has not yet been identified. By using p...
متن کاملFunctional characterization of nine Norway Spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily.
Constitutive and induced terpenoids are important defense compounds for many plants against potential herbivores and pathogens. In Norway spruce (Picea abies L. Karst), treatment with methyl jasmonate induces complex chemical and biochemical terpenoid defense responses associated with traumatic resin duct development in stems and volatile terpenoid emissions in needles. The cloning of (+)-3-car...
متن کاملThe primary diterpene synthase products of Picea abies levopimaradiene/abietadiene synthase (PaLAS) are epimers of a thermally unstable diterpenol.
The levopimaradiene/abietadiene synthase from Norway spruce (Picea abies; PaLAS) has previously been reported to produce a mixture of four diterpene hydrocarbons when incubated with geranylgeranyl diphosphate as the substrate: levopimaradiene, abietadiene, neoabietadiene, and palustradiene. However, variability in the assay products observed by GC-MS of this and orthologous conifer diterpene sy...
متن کاملGenomic organization of plant terpene synthases and molecular evolutionary implications.
Terpenoids are the largest, most diverse class of plant natural products and they play numerous functional roles in primary metabolism and in ecological interactions. The first committed step in the formation of the various terpenoid classes is the transformation of the prenyl diphosphate precursors, geranyl diphosphate, farnesyl diphosphate, and geranylgeranyl diphosphate, to the parent struct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 3 شماره
صفحات -
تاریخ انتشار 2008